191 research outputs found

    A Tactile P300 Brain-Computer Interface

    Get PDF
    In this study, we investigated a Brain-Computer Interface (BCI) based on EEG responses to vibro-tactile stimuli around the waist. P300 BCIs based on tactile stimuli have the advantage of not taxing the visual or auditory system and of being potentially unnoticeable to other people. A tactile BCI could be especially suitable for patients whose vision or eye movements are impaired. In Experiment 1, we investigated its feasibility and the effect of the number of equally spaced tactors. Whereas a large number of tactors is expected to enhance the P300 amplitude since the target will be less frequent, it could also negatively affect the P300 since it will be difficult to identify the target when tactor density increases. Participants were asked to attend to the vibrations of a target tactor, embedded within a stream of distracters. The number of tactors was two, four or six. We demonstrated the feasibility of a tactile P300 BCI. We did not find a difference in SWLDA classification performance between the different numbers of tactors. In a second set of experiments we reduced the stimulus onset asynchrony (SOA) by shortening the on- and/or off-time of the tactors. The SOA for an optimum performance as measured in our experiments turned out to be close to conventional SOAs of visual P300 BCIs

    Editorial: Using neurophysiological signals that reflect cognitive or affective state

    Get PDF
    The central question of this Frontiers Research Topic is: What can we learn from brain and other physiological signals about an individual's cognitive and affective state and how can we use this information? This question reflects three important issues which are addressed by the 22 articles in this volume: (1) the combination of central and peripheral neurophysiological measures; (2) the diversity of cognitive and affective processes reflected by these measures; and (3) how to apply these measures in real world applications

    A usability study of physiological measurement in school using wearable sensors

    Get PDF
    Measuring psychophysiological signals of adolescents using unobtrusive wearable sensors may contribute to understanding the development of emotional disorders. This study investigated the feasibility of measuring high quality physiological data and examined the validity of signal processing in a school setting. Among 86 adolescents, a total of more than 410 h of electrodermal activity (EDA) data were recorded using a wrist-worn sensor with gelled electrodes and over 370 h of heart rate data were recorded using a chest-strap sensor. The results support the feasibility of monitoring physiological signals at school. We describe specific challenges and provide recommendations for signal analysis, including dealing with invalid signals due to loose sensors, and quantization noise that can be caused by limitations in analog-to-digital conversion in wearable devices and be mistaken as physiological responses. Importantly, our results show that using toolboxes for automatic signal preprocessing, decomposition, and artifact detection with default parameters while neglecting differences between devices and measurement contexts yield misleading results. Time courses of students' physiological signals throughout the course of a class were found to be clearer after applying our proposed preprocessing steps

    A Neural Network Framework for Cognitive Bias

    Get PDF
    Human decision-making shows systematic simplifications and deviations from the tenets of rationality (‘heuristics’) that may lead to suboptimal decisional outcomes (‘cognitive biases’). There are currently three prevailing theoretical perspectives on the origin of heuristics and cognitive biases: a cognitive-psychological, an ecological and an evolutionary perspective. However, these perspectives are mainly descriptive and none of them provides an overall explanatory framework for the underlying mechanisms of cognitive biases. To enhance our understanding of cognitive heuristics and biases we propose a neural network framework for cognitive biases, which explains why our brain systematically tends to default to heuristic (‘Type 1’) decision making. We argue that many cognitive biases arise from intrinsic brain mechanisms that are fundamental for the working of biological neural networks. To substantiate our viewpoint, we discern and explain four basic neural network principles: (1) Association, (2) Compatibility, (3) Retainment, and (4) Focus. These principles are inherent to (all) neural networks which were originally optimized to perform concrete biological, perceptual, and motor functions. They form the basis for our inclinations to associate and combine (unrelated) information, to prioritize information that is compatible with our present state (such as knowledge, opinions, and expectations), to retain given information that sometimes could better be ignored, and to focus on dominant information while ignoring relevant information that is not directly activated. The supposed mechanisms are complementary and not mutually exclusive. For different cognitive biases they may all contribute in varying degrees to distortion of information. The present viewpoint not only complements the earlier three viewpoints, but also provides a unifying and binding framework for many cognitive bias phenomena

    Using neurophysiological signals that reflect cognitive or affective state: Six recommendations to avoid common pitfalls

    Get PDF
    Estimating cognitive or affective state from neurophysiological signals and designing applications that make use of this information requires expertise in many disciplines such as neurophysiology, machine learning, experimental psychology, and human factors. This makes it difficult to perform research that is strong in all its aspects as well as to judge a study or application on its merits. On the occasion of the special topic “Using neurophysiological signals that reflect cognitive or affective state” we here summarize often occurring pitfalls and recommendations on how to avoid them, both for authors (researchers) and readers. They relate to defining the state of interest, the neurophysiological processes that are expected to be involved in the state of interest, confounding factors, inadvertently “cheating” with classification analyses, insight on what underlies successful state estimation, and finally, the added value of neurophysiological measures in the context of an application. We hope that this paper will support the community in producing high quality studies and well-validated, useful applications

    BCI to Potentially Enhance Streaming Images to a VR Headset by Predicting Head Rotation

    Get PDF
    While numerous studies show that brain signals contain information about an individual’s current state that are potentially valuable for smoothing man–machine interfaces, this has not yet lead to the use of brain computer interfaces (BCI) in daily life. One of the main challenges is the common requirement of personal data that is correctly labeled concerning the state of interest in order to train a model, where this trained model is not guaranteed to generalize across time and context. Another challenge is the requirement to wear electrodes on the head. We here propose a BCI that can tackle these issues and may be a promising case for BCI research and application in everyday life. The BCI uses EEG signals to predict head rotation in order to improve images presented in a virtual reality (VR) headset. When presenting a 360° video to a headset, field-of-view approaches only stream the content that is in the current field of view and leave out the rest. When the user rotates the head, other content parts need to be made available soon enough to go unnoticed by the user, which is problematic given the available bandwidth. By predicting head rotation, the content parts adjacent to the currently viewed part could be retrieved in time for display when the rotation actually takes place. We here studied whether head rotations can be predicted on the basis of EEG sensor data and if so, whether application of such predictions could be applied to improve display of streaming images. Eleven participants generated left- and rightward head rotations while head movements were recorded using the headsets motion sensing system and EEG. We trained neural network models to distinguish EEG epochs preceding rightward, leftward, and no rotation. Applying these models to streaming EEG data that was withheld from the training showed that 400 ms before rotation onset, the probability “no rotation” started to decrease and the probabilities of an upcoming right- or leftward rotation started to diverge in the correct direction. In the proposed BCI scenario, users already wear a device on their head allowing for integrated EEG sensors. Moreover, it is possible to acquire accurately labeled training data on the fly, and continuously monitor and improve the model’s performance. The BCI can be harnessed if it will improve imagery and therewith enhance immersive experience
    • 

    corecore